EXHIBIT 6



An analysis of Dorkbot’s infection vectors (part 2) - Microsoft Malware Protection Center... Page 1 of 4

An analysis of Dorkbot's infection vectors (part 2)
msft-mmpe ‘ 21 Nov 2012 335 AM ‘ 0

http://blogs.technet.com/b/mmpc/archive/2012/11/21/an-analysis-of-dorkbot-s-infection-ve... 9/25/2015



An analysis of Dorkbot’s infection vectors (part 2) - Microsoft Malware Protection Center...

In part 1 of this series, we talked about Dorkbot and its spreading mechanisms
that required user interaction. In this post, we'll talk about how Dorkbot spreads
automatically, via drive-by downloads and Autorun files.

Spreading vectors not requiring user interaction: Drive-by
downloads and Autorun files

Dorkbot can also spread automatically, without user interaction. We recently
encountered a malicious Java applet that exploits the vulnerability described in
CVE-2012-4681 to distribute the Dorkbot worm. We detect the applet as

xploitJava/CVE-2012-4 Let's take a closer look at how this exploit
works,

Java applets that are not digitally signed are considered untrusted. They are
executed with limited permissions by the Java Runtime Environment. Before it
can download and execute arbitrary files, Exploit:Java/CVE-2012-4681.HD has to
disable the security manager, which defines the security policy of the applet.
The security manager can be disabled with a call to System.setSecurityManager
{null), but applets are restricted from calling this method directly.

The exploit relies on vulnerabilities in the implementation of the following two
methods:

+ Method com.sun.beans.finder.ClassFinder.findClass(String,ClassLoader)
+ Method com.sun.beans.finder. MethodFinder.findAccessibleMethod
(Class, String, Class(])

We decompiled the method ClassFinderfindClass to determine why it was
vulnerable. As shown in Figure 8, ClassFinder.findClass calls the method
Class.forName in its internal implementation. The method Class.forName in turn
only looks at the immediate caller to perform security checks. As you can see,
the vulnerability lies in the way Class.forName is used, and not in the method
Class.forName itself.

The fix was to perform an additional package access check at the beginning of
method ClassFinder.findClass, a check that fails if an applet attempts to access a
restricted Java class (Figure 8).

Fackage im.sun.keasns.findes:

5 mams) throws ©

satrane) ;

package java.lang:

publis fimal clazs Tlaaz implements Zeziaslizable, TeneracDeslazasicn, TyEe. AnnstatedElerent

Figure 8: The vulnerability in com.sun.beans.finder.ClassFinder.findClass
(String,ClassLoader)

Another issue, this time in the implementation of the method
sun.awt.SunToolkit.getField(Class,String), allows one to access private members
of Java classes. The method SunToolkit.getField would not be accessible by
default to user code, but the exploit calls it with the help of a
java.beans.Expression object. java.beans.Expression.executef) is also vulnerable
because it relies on the two vulnerable methods described above.

Exploit:Java/CVE-2012-4681.HD calls SunToolkit.getField to modify a private
member of a java.beans.Statement object and set the access control context to

Page 2 of 4

http://blogs.technet.com/b/mmpc/archive/2012/11/21/an-analysis-of-dorkbot-s-infection-ve... 9/25/2015



An analysis of Dorkbot’s infection vectors (part 2) - Microsoft Malware Protection Center... Page 3 of 4

“all permissions”. The class Statement can be used to invoke methods from
arbitrary classes with modified access control context value. The exploit relies on
a Statement object with modified access control context to invoke the
privileged method System.setSecurityManager. After this, it has the permission
to download additional malware (Figure 9).

Create a java.beans. Statement object.
Set it up to call System.setSecurityManager nul

4

the access control context field of the st ent object
created before.

¥

Invoke executs() on the Statement object to disable the
security manager.

4

Download and execute Worm:Win32/Dorkbot from

Attp.//212.150[removed] /Facebook msn.exe

r.oclaszes

Figure 9: Execution flow of Exploit:Java/CVE-2012-4681.HD

As is typical for Java exploits nowadays, the code of Exploit:Java/CVE-2012-
4681.HD is heavily obfuscated to try to bypass AV detection. Figure 10 shows
how the exploit retrieves the private field “acc” of the java.beans.Statement
class, a field that defines the access control context.

Figure 10: Obfuscated code in Exploit-Java/CVE-2012-4681.HD

Exploits for CVE-2012-4681 are guaranteed to work if the Java Runtime
Environment is vulnerable (unlike exploits for memory corruptions, for instance).
They are also platform independent (so they can also infect *nix and Mac users)
and target a huge base of Java installations.

Unsurprisingly, as shown in Figure 11, our telemetry indicates that exploits for
CVE-2012-4681 have been widely used to distribute malware since the
vulnerability was first made public in late August 2012. A security update to
resolve it was released around the same time.

http://blogs.technet.com/b/mmpc/archive/2012/11/21/an-analysis-of-dorkbot-s-infection-ve... 9/25/2015



An analysis of Dorkbot’s infection vectors (part 2) - Microsoft Malware Protection Center... Page 4 of 4

Daily Report Volume: 3,558,096 Reports

250,000

L T T T T Ty

D D D DD e D
AT T DR O T T
e e =

(%

Figure 11: Infections attempts with CVE-2012-4681 Java exploits reported from
September 15th to October 17th, 2012

To avoid getting infected through drive-by downloads, make sure your software
is up to date — for Java specifically, we talked about that in a previous post.

Worm:Win32/Dorkbot can also infect removable drives, by creating an
autorun.inf file that points to a copy of the worm. If you have Autorun enabled
in your computer, Dorkbot automatically runs whenever the removable drive is
accessed. Fortunately, this distribution method is not very effective anymore as
explained in a previous blog post. Please keep your Windows up-to-date to deal
with this infection vector.

Conclusion

As we previously mentioned, malware these days use a variety of ways to infect
computers and Dorkbot is no exception. And its access to a C&C server allows
for a certain level of dynamic behavior. Because of this, we advise users to be
more vigilant against all the different channels that Dorkbot uses.

And finally, always make sure your definitions are up-to-date for your antivirus
solution. If you don't have one and you're running Windows XP, Vista, or 7, you

can download and install Microsoft Security Essentials for free. If you're using

Windows 8, make sure your antivirus program is enabled and running properly.

The following are the SHA1s of the samples that we've analyzed for this blog
post:

+ ExploitJava/CVE-2012-4681.HD -
624121d44b87369badffad75db64fbb7bc395b3

* Worm:Win32/Dorkbot spreading component -
11a2ddb73af46060802537dec0f879%e2a0dc13f

« Worm:Win32/Dorkbot.A - 4176f4193b1ef64569bf0ab220113cceb074dfde

* Worm:Win32/Dorkbot.| - 37c09e044ebe57ebb6aabc7 2cb039140b3b985F1

Horea Coroiu, MMPC Munich

Comments

http://blogs.technet.com/b/mmpc/archive/2012/11/21/an-analysis-of-dorkbot-s-infection-ve... 9/25/2015



